Practical Loss-Resilient Codes

Michael Luby* Michael Mitzenmacher! Amin Shokrollahi*

Daniel Spielman® Volker Stemann¥

Abstract

We present a randomized construction of linear-time encodable and decodable codes
that can transmit over lossy channels at rates extremely close to capacity. The encoding
and decoding algorithms for these codes have fast and simple software implementations.
Partial implementations of our algorithms are faster by orders of magnitude than the
best software implementations of any previous algorithm for this problem. We expect
these codes will be extremely useful for applications such as real-time audio and video
transmission over the Internet, where lossy channels are common and fast decoding is
a requirement.

Despite the simplicity of the algorithms, their design and analysis are mathemati-
cally intricate. The design requires the careful choice of a random irregular bipartite
graph, where the structure of the irregular graph is extremely important. We model the
progress of the decoding algorithm by a set of differential equations. The solution to
these equations can then be expressed as polynomials in one variable with coefficients
determined by the graph structure. Based on these polynomials, we design a graph
structure that guarantees successful decoding with high probability.

*International Computer Science Institute, Berkeley, California. Portions of this research done while
at Digital Equipment Corporation, Systems Research Center, Palo Alto, CA. Research supported in part
by National Science Foundation operating grant NCR-9416101, and United States-Israel Binational Science
Foundation grant No. 92-00226.

"Digital Equipment Corporation, Systems Research Center, Palo Alto, CA. A substantial portion of
this research done while at the Computer Science Department, UC Berkeley, under the National Science
Foundation grant No. CCR-9505448.

‘International Computer Science Institute Berkeley, and Institut fir Informatik der Universitat Bonn,
Germany. Research supported by a Habilitationsstipendium of the Deutsche Forschungsgemeinschaft, Grant
Sh 57/1-1.

$Department of Mathematics, M.I.T. Supported by an NSF mathematical sciences postdoc. A substantial
portion of this research done while visiting U.C. Berkeley.

fResearch done while at the International Computer Science Institute.

1 Introduction

In many communication situations, data is lost in transit. A standard response to this
problem is to request retransmission of data that is not received. When some of this
retransmission is lost, another request is made, and so on. Such communication protocols
can lead to delays due to the need for several rounds of communication between sender and
receiver.

An alternative solution, often called forward error-correction in the networking liter-
ature, is sometimes desirable: Suppose an application sends a real-time stream of data
symbols that is partitioned and transmitted in logical units of blocks.! Furthermore, sup-
pose the network experiences transient and unpredictable losses of at most a p fraction of
symbols out of each block. The following insurance policy can be used to tradeoff the effects
of such uncontrollable losses on the receiver for controllable degradation in quality. Suppose
originally a particular block consists of n data symbols. Instead of sending a message of n
data symbols, send a message of only (1 — p)n data symbols, by either selecting the most
important parts from the original data stream and omitting the remainder, or by generating
a slightly lower quality stream at a (1 — p) fraction of the original rate. Fill out the block to
its original length of n with pn redundant (check) symbols. This scheme provides optimal
loss protection if the (1 — p)n symbols in the message can all be recovered from any set of
(1 — p)n received symbols from the block. Such a scheme can be used as the basic building
block for the more robust and general protection scheme described in [1].

The problem is to design fast enough encoding and decoding algorithms to make this
solution feasible. In this paper, we present codes that can be encoded and decoded in linear
time while providing near optimal loss protection. Moreover, these linear time algorithms
can be implemented to run very quickly in software.

Our results hold whether each symbol is a single bit or a packet of many bits. We
assume that the receiver knows the position of each received symbol within the stream of
all encoding symbols. This is appropriate for the Internet, where packets are indexed. We
adopt as our model of losses the erasure channel, introduced by Elias [6], in which each
encoding symbol is lost with a fixed constant probability p in transit independent of all the
other symbols. This assumption is not appropriate for the Internet, where losses can be
highly correlated and bursty. However, losses on the Internet in general are not sensitive to
the actual contents of each packet, and thus if we place the encoding into the packets in a
random order then the independent loss assumption is valid.

Elias [6] showed that the capacity of the erasure channel is 1 — p and that a random
linear code can be used to transmit over the erasure channel at any rate R < 1 — p. This
means that a random linear code can be used to convert a message of length Rn into a
transmission of length n from which the message can be recovered from most portions of
length greater than Rn. Moreover, every linear code has quadratic time encoding algorithms
and cubic time decoding algorithms. One cannot hope for better information recovery, but

1 An example of this is an MPEG stream, where a group of pictures can constitute such a block, and
where each symbol corresponds to the contents of one packet in the block. The latency incurred by the
application is proportional to the time it takes between when the first and last packet of the block is sent,
plus the one-way travel time through the network.

faster encoding and decoding times are desirable, especially for real-time applications.

Reed-Solomon codes can be used to transmit at the capacity of the erasure channel with
order nlogn encoding time and quadratic decoding time. These codes have recently been
customized to compensate for Internet packet loss in real-time transmission of moderate-
quality video [1]. Even this optimized implementation required the use of dedicated worksta-
tions. Transmission of significantly higher quality video requires faster coding algorithms.

In theory, it is possible to decode Reed-Solomon codes in time O(nlog® nloglogn) (see,
[4, Chapter 11.7] and [9, p. 369]). However, for small values of n, quadratic time algorithms
are faster than the fast algorithms for the Reed-Solomon based codes, and for larger values
of n the O(log? n log log n) multiplicative overhead in the running time of the fast algorithms
(with a moderate sized constant hidden by the big-Oh notation) is large, i.e., in the hundreds
or larger.

We obtain very fast linear-time algorithms by transmitting just below channel capacity.
We produce rate R = 1—p(1+¢€) codes along with decoding algorithms that recover from the
random loss of a p fraction of the transmitted symbols in time proportional to nIn(1/¢€), with
high probability. They can also be encoded in time proportional to nln(1/¢). In Section 7,
we do this for all ¢ > 0. The fastest previously known encoding and decoding algorithms
[2] with such a performance guarantee have run times proportional to nln(1/¢€)/e. (See also
[3] for related work.)

The overall structure of our codes are related to codes introduced in [12] for error-
correction. We explain the general construction along with the encoding and decoding
algorithms in Section 2.

Our encoding and decoding algorithms are almost symmetrical. Both are extremely
simple, computing exactly one XOR operation for each edge in a randomly chosen bipartite
graph. As in many similar applications, the graph is chosen to be sparse, which immediately
implies that the encoding and decoding algorithms are fast. Unlike many similar applica-
tions, the graph is not regular; instead it is quite irregular with a carefully chosen degree
sequence. We describe the decoding algorithm as a process on the graph in Section 3. Our
main tool is a model that characterizes almost exactly the performance of the decoding
algorithm as a function of the degree sequence of the graph. In Section 4, we use this
tool to model the progress of the decoding algorithm by a set of differential equations. As
shown in Lemma 1, the solution to these equations can then be expressed as polynomials in
one variable with coefficients determined by the degree sequence. The positivity of one of
these polynomials on the interval (0, 1] with respect to a parameter § guarantees that, with
high probability, the decoding algorithm can recover almost all the message symbols from
a loss of up to a é fraction of the encoding symbols. The complete success of the decoding
algorithm can then be demonstrated by combinatorial arguments such as Lemma 3.

Our analytical tools allow us to almost exactly characterize the performance of the
decoding algorithm for any given degree sequence. Using these tools, we analyze regular
graphs in Section 6, and conclude that they cannot yield codes that are close to optimal.
Hence irregular graphs are a necessary component of our design.

Not only do our tools allow us to analyze a given degree sequence, but they also help
us to design good irregular degree sequences. In Section 7 we describe, given a parameter

€ > 0, a degree sequence for which the decoding is successful with high probability for a loss
fraction ¢ that is within ¢ of 1 — R. Although these graphs are irregular, with some nodes
of degree 1/¢, the average degree of each nodes is only In(1/€). This is the main result of
the paper, i.e., a code with encoding and decoding times proportional to In(1/¢) that can
recover from a loss fraction that is within ¢ of optimal.

In Section 9, we show how linear programming techniques can be used to find good
degree sequences for the nodes on the right given a degree sequence for the left nodes. We
demonstrate these techniques by finding the right degree sequences that are optimal for a
series of example left degree sequences.

1.1 Terminology

The block length of a code is the number of symbols in the transmission. In a systematic
code, the transmitted symbols can be divided into message symbols and check symbols. We
take the symbols to be elements of GI'(2), and all arithmetic operations to be over this field;
i.e., addition is equivalent to taking the exclusive-or of two elements. The message symbols
can be chosen freely, and the check symbols are computed from the message symbols. The
rate of a code is the ratio of the number of message symbols to the block length. For
example, in a code of block length n and rate R, the encoder takes as input Rn message
symbols and produces n symbols to be transmitted. In all of our constructions, we assume
that the symbols are bits. It is easy to extend our constructions to work with symbols that
are packets of bits: where we would take the sum of two bits, just take the bit-wise sum of
two packets.

2 The Codes

In this section, we explain the overall construction, as well as the encoding and decoding
algorithms. We begin by defining a code C(B) with n message bits and fn check bits,
by associating these bits with a bipartite graph B. The graph B has n left nodes and
fOn right nodes, corresponding to the message bits and the check bits, respectively. The
encoding consists of computing each check bit as the sum of the bits of its neighbors in B
(see Figure 1(a)). Thus, the encoding time is proportional to the number of edges in B.

The main contribution of our work is the design and analysis of the bipartite graph B
so that the repetition of the following simplistic decoding operation recovers all the missing
message bits.

If one knows the value of a check bit and all but one of the message
bits on which it depends,

Then the value of the missing message bit can be found by computing
the sum of the check bit and its known message bits.

See Figure 1(b) for an example of this operation. The advantage of relying solely on this
recovery operation is that the total decoding time is (at most) proportional to the number
of edges in the graph. Our main technical innovation is in the design of sparse random

computes the sum
modulo 2 of its

neighbors X Q
&Q
% Q&
: G X+ Q/@ ;
®

8 P e 8)

P G ey
O O
X, O,/ check O)

bits
message
bits

[eJe)e)

@ (b)

Figure 1: (a) A graph defines a mapping from message bits to check bits.
(b) Bits z1, 22, and ¢; are used to solve for z3.

graphs where repetition of this operation is guaranteed to usually recover all the message
bits if at most (1 — €)fn of the message bits have been lost from C(B).

To produce codes that can recover from losses regardless of their location, we cascade
codes of the form C(B): we first use C(B) to produce §n check bits for the original n message
bits, we then use a similar code to produce 3%n check bits for the Sn check bits of C(B),
and so on (see Iigure 2). At the last level, we use a more conventional loss-resilient code.
Formally, we begin with a sequence of graphs By, ..., B,,, where B; has 3'n left nodes and
Bi*1n right nodes, to construct a sequence of codes C(By),...,C(B,,). We select m so that
3™ 1 is roughly \/n and we end the cascade with a loss-tesilient code C' of rate 1 — 3 with
A" *1n message bits for which we know how to recover from the random loss of 3 fraction
of its bits with high probability. We then define the code C(By, B1, ..., Bm,C) to be a code
with n message bits and

m+1

> B+ (1 - B) = np/(1-f)

=1

check bits formed by using C(Bp) to produce fn check bits for the n message bits, using
C(B;) to form Bt1n check bits for the Bin bits produced by C(B;_1), and finally using C
to produce an additional n3™*2/(1 — 3) check bits for the 3™*!n bits output by C(B,,).
As C(Byg, B1,. .., B, C) has n message bits and nf/(1 —) check bits, it is a code of rate
1-4.

Assuming that the code C' can be encoded and decoded in quadratic time?, the code

2A good candidate for the code C is the low-density parity-check [7, 11] version of these codes: only
send the messages that cause all the check bits to be zero. These codes can be decoded in linear time and
encoded in quadratic time with miniscule constants. In the final version of this paper, we show how C can
be replaced with an even simpler code C’ that can be encoded and decoded in linear time but that has a
worse decoding guarantee. Using C’, we can end the cascade with roughly en nodes instead of \/n for C.

B .
=& conventiona §
@ code @

| ~® ®

Figure 2: The code levels.

C(Bo,...,Bm,C) can be encoded and decoded in time linear in n. We begin by using the
decoding algorithm for C' to recover losses that occur within its corresponding bits. If '
recovers all the losses, then the algorithm now knows all the check bits produced by C(B,,),
which it can then use to recover losses in the inputs to C(B,,). As the inputs to each C(B;)
were the check bits of C(B;_1), we can work our way back up the recursion until we use
the check bits produced by C(By) to recover losses in the original n message bits. If we can
show that C' can recover from the random loss of a §(1 — ¢) fraction of its bits with high
probability, and that each C(B;) can recover from the random loss of a (1 — ¢) fraction
of its message bits with high probability, then we have shown that C(By, B1, ..., By, C) is
a rate 1 — 8 code that can recover from the random loss of a §(1 — ¢€) fraction of its bits
with high probability. Thus, for the remainder of the paper, we only concern ourselves with
finding graphs B so that the decoding algorithm can recover from a 3(1 — ¢€) fraction of
losses in the message bits of C(B), given all of its check bits.

3 The Graph Process and Degree Sequences

We now relate the decoding process of C(B) to a process on a subgraph of B, so that
hereafter we can use this simpler terminology in describing the process. This subgraph
consists of all nodes on the left that have not been decoded thus far, all the nodes on the
right, and all the edges between these nodes. Recall that the decoding process requires
finding a check bit on the right such that only one adjacent message bit is missing; this
adjacent bit can then be recovered. In terms of the subgraph, this is equivalent to finding
a node of degree one on the right, and removing it, its neighbor, and all edges adjacent to
its neighbor from the subgraph. We refer to this entire sequence of events hereafter as one
step of the decoding process. We repeat this step until there are no nodes of degree one
available on the right. The entire process is successful if it does not halt until all nodes on
the left are removed, or equivalently, until all edges are removed.

The graphs that we use are chosen at random from carefully chosen degree sequence on
sparse bipartite graphs. In contrast with many applications of random graphs in computer

science, our graphs are not regular. Indeed, the analysis in Section 6 shows that it is not
possible to approach channel capacity with regular graphs.

We refer to edges that begin adjacent to a node of degree i on the left (right) as edges
of degree i on the left (right). Each of our degree sequences is specified by a pair of vectors
(M, ..oy Ap) and (p1, ..., pm) where A; is the fraction of edges on the left of degree i and p;
is the fraction of edges on the right of degree j. Note that our graphs are specified in terms
of fractions of edges, and not nodes, of each degree; this form is more convenient for much
of our work. To choose an appropriate random bipartite graph B with F edges, n nodes
on the left, and #n nodes on the right, we begin with a bipartite graph B’ with £ nodes
on both the left and right hand sides, with each node of B’ representing an edge slot. Each
node on the left hand side of B’ is associated with a node on the left side of B, so that the
distribution of degrees is given by (A1, ..., A), and similarly for the right. We then choose
a random matching (i.e., a random permutation) between the two sets of F nodes on B’.
This induces a random bipartite graph on B in the obvious manner with the desired degree
structure.

Note that, in the corresponding subgraph of B’ remaining after each step, the matching
remaining on B’ still corresponds to a random permutation. Hence, conditioned on the
degree sequence of the remaining subgraph after each step, the subgraph that remains is
uniform over all subgraphs with this degree sequence. The evolution of the degree sequence
is therefore a Markov process, a fact we make use of below.

In the next two sections, we develop techniques for the analysis of the process for general
degree sequences. After using these techniques in Section 6 to analyze regular graphs, we
describe degree sequences that result in codes that approach the capacity of the erasure
channel in Section 7.

4 Differential Equations Description

To analyze the behavior of the process on the subgraph of B described in the previous
section, we begin by establishing a set of differential equations that describes its behavior
in the limiting case, as the block length goes to infinity. Alternatively, one may think of these
equations as describing the expected behavior of the associated random variables. Although
these differential equations provide the key insight into the behavior of the decoding process,
additional work is required to justify the relationship between the limiting and finite cases.

We begin with the initial random graph B, with n left nodes and @Bn right nodes.
Consider the two vectors (A;) and (p;), where A; and p; are the fractions of edges of degree
1 on the left, respectively right, with respect to the total number F of edges in the original
graph. The average node degree on the left a, initially satisfies a;l = >, Ai/i, and similarly
the average node degree on the right a, initially satisfies a;! = 3, p;/i.

We scale the passage of time so that each time unit of length Af := % corresponds to
one step of the decoding process. Let § be the fraction of losses in the message. Initially,
just prior to time 0, each node on the left is removed with probability 1 — é (because
the corresponding message bit is successfully received), and thus the initial subgraph of
B contains én nodes on the left. If the process terminates successfully, it runs until time

on/E = 6/a;. Welet £;(t) and r;(t) represent the fraction of edges (in terms of) of degree
i on the left and right, respectively, at time . We denote by e(¢) the fraction of the edges
remaining, that is, e(t) = >, {;(t) = 3>, ri(?).

Recall that at each step, a random node of degree one on the right is chosen, and the
corresponding node on the left and all of its adjacent edges are deleted. (If there is no such
node, the process necessarily stops.) The probability that the edge adjacent to the node of
degree one on the right has degree 7 on the left is £;(¢)/e(¢), and in this case we lose i edges
of degree 7. This gives rise to the difference equation

Zﬁz(t)
e(t)
for the expected change of the number of edges L;(t) of degree ¢ on the left. Noting that

4i(t) = Li(t)/ E = L;(t)At, we see that in the limit as 22 — oo the solution of this difference
equation is described by that of the differential equation

[,Z'(t + At) — ,Cz(t) = —

dfz(t) _ lﬁz(t)
it~ e(t) (1)

When we remove a node of degree 7 on the left, we remove the one edge of degree one
from the right, along with the ¢ — 1 other edges adjacent to this node. Hence the expected
number of other edges deleted is a(t) — 1, where a(t) = Y il;(t)/e(t). The right endpoints
of these ¢ — 1 other edges on the right hand side are randomly distributed. If one of these
edges is of degree 7 on the right, we lose j edges of degree 7, and gain j — 1 edges of degree
j — 1. The probability that an edge has degree j on the right is just r;(¢)/e(t). For i > 1,
then, the difference equation

wa(t)—1
Ri(t+ At) — Ri(t) = (riya1(t) — n(t))%
describes the expected change of the number of edges R;(t) of degree 7 on the right. The
corresponding differential equations for the r;(¢) are therefore

T~ (rina(0) -)))

(We assume that r;() is defined for all positive ¢, and is 0 for sufficiently large ¢.) The case
¢ = 1 plays a special role, as we must take into account that at each step an edge of degree
one on the right is removed. Hence, the differential equation for r(%) is given as

dni(t) _ (a() = 1)
§i = () = () e 3)

Our key interest is in the progression of r1(t) at a function of . As long as r1(¢) > 0, so
that we have a node of degree one on the right, the process continues; when r1(¢) = 0 the
process stops. Hence we would like for r1(¢) > 0 until all nodes on the left are deleted and
the process terminates successfully.

These differential equations are more easily solved by defining z so that dz/z = dt/e(?).
The value of z in terms of ¢ is then z := exp(— fjdr/e(r)). By substituting dz/z for
dt/e(t), equation (1) becomes df;(z)/dz = —il;(x)/z, and integrating yields £;(z) = ¢;2'.
Note that z = 1 for t = 0, and ¢;(t = 0) = § ;. Hence, ¢; = §); and

Ci(z) = 6)a'.

Since {;(z) goes to zero as t goes to §/ay, x runs over the interval [1,0).

Solving for the r;(z) is more involved. The main goal is to show that r4(z) > 0 on (0, 1],
so that the process does not halt before completion. Details for solving for the r;(z), and in
particular for r1(z), are given in Appendix A; the proposition below presents the solution
for r1(z). The result is expressed using the generating functions

Alz) = Z Azt

i>1

p(z) =7 pia" ™

i>1

and

these generating functions play an important role in the remainder of our presentation.

Lemma 1 The solution r1(z) of the differential equation (3) is given by

n(@) = 6M@)[e — 1+ p(1 - 6A(2))]. (4)
From (4), we find that this requires the condition
p(1—6Xz))>1—=2, z€(0,1]. (5)

This condition shall play a central role for the remainder of our work.

5 Using the Differential Equations to Build Codes

Recall that the differential equations describe the limiting behavior of the process on B, as
the block length goes to infinity. From this one can derive that if (5) is violated, so that
p(1—6A(z)) < 1— z somewhere on (0, 1] then the process fails for large block lengths with
high probability.

Proving the process progresses almost to completion if (5) is satisfied is possible by relat-
ing the differential equations to the underlying random process (see, e.g., [8, 10]). Proving
the process runs to completion can be handled with a separate combinatorial argument. In
some cases, however, this requires small modifications in the graph construction.

Lemma 2 Let B be a bipartite graph chosen at random with edge-degrees specified by \(x)
and p(z). Let 6 be fized so that

p(1—6X(z))>1—uz, for z € (0,1].

For all p > 0, if the message bits of C(B) are lost independently with probability 6, then the
decoding algorithm terminates with more than nm message bits not recovered with exponen-
tially small probability, as the block length grows large.

The following combinatorial tail arguments is useful in showing that the process termi-
nates successfully when there are no nodes on the left of degree one or two. (Such arguments
are often required in similar situations; see, for example, [5].)

Lemma 3 Let B be a bipartite graph chosen at random with edge-degrees specified by A(x)
and p(z), such that M(z) has \y = Ay = 0. Then there is some n > 0, such that with
probability 1 — o(1) (over the choice of B) if at most an n fraction of the nodes on the left
in B remain, then the process terminates successfully.

Proof: [Sketch] Let S be any set of nodes on the left of size at most nn. Let a be the
average degree of these nodes. If the number of nodes on the right that are neighbors of
S is greater than a|S|/2, then one of these nodes has only one neighbor in |5|, and so the
process can continue. Thus, we only need to show that the initial graph is a good expander
on small sets. Since the degree of each node on the left is at least three, standard proofs
(see [11]) suffice to show that the expansion condition holds with high probability for all
sets containing at most an n fraction of the left nodes. O

Using Lemmas 2 and 3, we can show that the codes presented in Section 7 work with
high probability. As our asymptotic results for asymptototically good general codes use
graphs with degree two nodes on the left, we extend the construction and use more careful
arguments to prove that the process completes, as described in Section 7.

6 Analysis of Regular Graphs

We demonstrate the techniques developed in the previous section in a simple setting: we
analyze the behavior of the process on random regular graphs. Because random regular
graphs have so often been used in similar situations, it is natural to consider if they give
rise to codes that are close to optimal. They do not. The following lemma proves a weak
form of this behavior. We have explicitly solved for the largest value of § which satisfies
condition (5) for codes based on regular graphs for several rate values. In every case, there
is some small degree value that achieves a maximum value of § far from optimal, and the
maximal achievable value of § decreases as the degree increases thereafter.

Lemma 4 Let B be a bipartite reqular graph chosen at random, with all edges having left
degree d and right degree d/(, for d > 3. Then condition (5) holds only if

1
1 (a7p)-1
6<4|ll - | ——
i1 (7)),
and hence as d — oo, the maximum acceptable loss rate goes to 0.

Proof: We have that A(z) = 29", and p(z) = z(4/%=". Hence our condition (5) on the
acceptable loss rate § becomes

(1 — (5.rd_1)(d/ﬁ)_l >1—z

for z € (0,1].
We plug in @ = 1 — 72, Using the fact that (1 — 2-)%"! > 1 for d > 3 yields the

1
requirement
6\ (d/8)—1 1
(o)
4 d—1

This simplifies to the inequality in the statement of the lemma.

It is easy to check that as d — oo, the right hand side of the above equation goes to 0,
which concludes the lemma. |

Hence, for any fixed 3, there is some d which achieves the maximum value of § possible
using regular graphs, and this § is far from optimal. For example, in the case where § = 1/2,
we have found that the best solution is to let the left nodes have degree three and the right
nodes have degree six. In this case the code can handle any § fraction of losses with high
probability as long as

(1—6m2)521—$

for z € (0,1]. The inequality fails for é > 0.43. The rate R for this code is 1/2, and thus
the ratio 6/(1 — R) is at most 0.86, far from the optimal value of 1.00.

Simulation runs of the code turn out to match this value of ¢ accurately, demonstrating
that these techniques provide a sharp analysis of the actual behavior of the process.

7 Asymptotically Optimal Codes

In this section, we construct codes that transmit at rates arbitrarily close to the capacity of
the erasure channel. We do this by finding an infinite sequence of solutions to the differential
equations of Section 4 in which § approaches p.

As the degree sequences we use have degree two nodes on the left hand side, we cannot
appeal to Lemma 3 to show that they work with high probability. Hence our codes require
some additional structure.

Let B be a bipartite graph with n left nodes and (n right nodes. We describe our
choice for the left and right degree sequences of B that satisfy condition (5). Let d be a
positive integer that is used to trade off the average degree with how well the decoding
process works, i.e., how close we can make é to f = 1 — R and still have the process finish
successfully most of the time.

The left degree sequence is described by the following truncated heavy tail distribution.
Let H(d) = Y°%_, 1/i be the harmonic sum truncated at d, and thus H(d) ~ In(d). Then, for
alli = 2,...,d+1, the fraction of edges of degree 7 on the left is given by A\; = 1/(H(d)(i—1)).
The average left degree as; equals H(d)(d+ 1)/d. Recall that we require the average right
degree, a,, to satisfy a, = ay/f8. The right degree sequence is defined by the Poisson
distribution with mean a,: for all # > 1 the fraction of edges of degree 7 on the right equals

o e—aai—l
PGS

10

where a is chosen to guarantee that the average degree on the right is a,. In other words,
a satisfies ae®/(e* — 1) = a,.

Note that we allow p; > 0 for all 7 > 1, and hence p(z) is not truly a polynomial, but a
power series. However, truncating the power series p(z) at a sufficiently high term gives a
finite distribution of the edge degrees for which the next lemma is still valid.

We show that when 6 = /(14 1/d)in (5), the condition is satisfied, i.e., p(1—8A(z)) >
1 — =z on (0,1], where A(z) = 3, iz'™! and p(z) = 3, p;a*~!. Note that A(z) is the
expansion of —In(1 — z) truncated at the dth term, and scaled so that A(1) = 1. Further,

p(m) — ea(z—l))

Lemma 5 With the above choices for p(z) and A(z) we have p(1 —68A(z)) > 1—2 on (0,1]
76 < 5/(1+1/d)

Proof: Recall that p(z) = ¢*(®=1 hence p(z) increases monotonically in z. As a result,
we have

p(1—=6XMx)) > p(1+ 8In(1 —z)/H(d)) = (1 — 2)>*/H),

Since ay = H(d)(1+ 1/d) and a, = a¢/3, we obtain aé/H(d) = (1 —e™*)(1+ 1/d)é/5 <
0(14 1/d)/p < 1, which shows that the right hand side of the above inequality is larger
than 1 — 2 on (0, 1]. O

A problem is that Lemma 3 does not apply to this system because there are nodes of
degree two on the left. Indeed, simulations demonstrate that a small number of nodes often
do remain. To overcome this problem, we make a small change in the structure of the
graph B. We split the 8n right nodes of B into two distinct sets, the first set consisting
of (8 — 7)n nodes and the second set consisting of yn nodes, where 7 is a small constant
to be determined. The graph B is then formed by taking the union of two graphs, B; and
B,. B; is formed as described up to this point between the n left nodes and the first set
of (8 — v)n right nodes. Bj is formed between the n left nodes and the second set of yn
right nodes, where each of the n left nodes has degree three and the 3n edges are connected
randomly to the yn right nodes.

Lemma 6 Let B be the bipartite graph just described. Then, with high probability, the
process terminates successfully when started on a subgraph of B induced by én of the left

nodes and all Bn of the right nodes, where 6 = /(14 1/d).

Proof: [Sketch]In the analysis of the process, we may think of By as being held in reserve
to handle nodes not already dealt with using B;. Combining Lemma 5 and Lemma 2, we
can show that, for any constant > 0, with high probability at most nn nodes on the left
remain after the process runs on By. The induced graph in By between these remaining nn
left nodes and the yn right nodes is then a random bipartite graph such that all nodes on
the left have degree three. We choose v to be larger than n by a small constant factor so
that with high probability the process terminates successfully on this subgraph by Lemma 3;
note that the lemma applies since all nodes on the left have degree three. By choosing 7
sufficiently small, we may make « arbitrarily small, and hence the decrease in the value of
6 below that stated in Lemma 5 can be made arbitrarily small. ad

11

Note that the degree of each left node in this modified construction of B is at most three
bigger than the average degree of each left node in the construction of B described at the
beginning of this section. We can use this observation and the lemma above to immediately
prove our main theorem.

Theorem 1 For any R, any positive €, and sufficiently large block length n, there is a
loss-resilient code that, with high probability, is able to recover from the random loss of a
(1 = R)(1 — €)-fraction of its bits in time proportional to nln(1/c).

Proof: [Sketch] Set d = 1/e¢ to get a one level code with the properties described in
Lemma 6. Cascade versions of these codes as described in Section 2 to get the entire code.
The proof follows since each level of the cascade fails to recover all its message bits, given
all of its check bits, with small probability. O

8 A Linear-Algebraic Interpretation

The fn check bits of the code C(B) described in Section 2 can be computed by multiplying
the vector of n message bits by the fn x n matrix, M(B), whose (7, j)-th entry is 1 if there
is an edge in B between left node ¢ and right node j and is 0 otherwise (the multiplication is
over the field of two elements). We choose our graphs B to be sparse, so that the resulting
matrix M(B) is sparse and the multiplication can be performed quickly.

The efficiency of the decoding algorithm is related to the ease with which one can perform
Gaussian elimination on submatrices of M(B). If one knows all the check bits and all but
on of the message bits, then it is possible to recover the missing message bits if and only
if the én columns of M(B) indexed by the message bits have full rank. These bits can be
recovered by Gaussian elimination. In Section 7, we present a distribution on graphs B so
that these bits can be recovered by a very simple brute-force Gaussian elimination: for any
€ > 0, we present a distribution of graphs B so that almost all subsets of 3/(1 + €) columns
of M(B) have full rank and can be placed in lower-triangular form merely by permuting
the rows of the matrix. Moreover, the average number of 1s per row in M(B) is nin(1/¢);
so, the Gaussian elimination can be performed in time O(nln(1/¢)).

To contrast this with other constructions of loss-resilient codes, observe that most sets of
fn—1 columns of a random fn X n matrix have full rank. In fact, the probability that some
Bn — ¢ columns fail to have full rank is exponentiall small in ¢. However, we do not know of
an algorithm that solves the resulting elimination problem in less than the time it takes to
do a general matrix multiplication. Ideally, we would use matrices in which every set of gn
columns had full rank; but, such matrices do not exist over any constant-size field. However,
if we let our field size grow to n, classical matrices solve this problem. For example, all
subsets of gn columns of a Bn X n Vandermonde matrix are linearly independent.

9 Finding Degree Sequences using Linear Programming

In this section we describe a heuristic approach that has proven effective in practice to find
a good right degree sequence given a specific left degree sequence. The method uses linear

12

programming and the differential equation analysis of Section 4.

Recall that, from the differential equations, a necessary condition for the process to
complete is that p(1 —6A(z)) > 1 —z on (0, 1]. We first describe a heuristic for determining
for a given (finite) vector (\;) representing the left degree sequence and a value for § whether
there is an appropriate (finite) vector (p;) representing the right degree sequence satisfying
this condition. We begin by choosing a set M of positive integers which we want to contain
the degrees on the right hand side. To find appropriate p,,, m € M, we use the condition
given by Lemma 1 to generate linear constraints that the p; must satisfy by considering
different values of z. For example, by examining the condition at z = 0.5, we obtain the
constraint p(1 — 8A(0.5)) > 0.5, which is linear in the p;.

We generate constraints by choosing for z multiples of 1/N for some integer N. We
also include the constraints p,, > 0 for all m € M. We then use linear programming to
determine if suitable p,, exist that satisfy our derived constraints. Note that we have a
choice for the function we wish to optimize; one choice that works well is to minimize the
sum of p(1 —6A(z))+ 2z — 1 on the values of z chosen to generate the constraints. The best
value for ¢ for given N is found by binary search.

Given the solution from the linear programming problem, we can check whether the p;
computed satisfy the condition p(1 — §A(z)) > 1 —z on (0, 1].

Due to our discretization, there are usually some conflict subintervals in which the
solution does not satisfy this inequality. Choosing large values for the tradeoff parameter
N results in smaller conflict intervals, although it requires more time to solve the linear
program. For this reason we use small values of N during the binary search phase. Once
a value for 6 is found, we use larger values of N for that specific ¢ to obtain small conflict
intervals. In the last step we get rid of the conflict intervals by appropriately decreasing
the value of 6. This always works since p(1 — é\(z)) is a decreasing function of 4.

We ran the linear programming approach on degree sequences on the left of the form
AMz) = 330F2=1 22 /20, where s = 1 for rates less than 5/6, and s = 2 for the two rates
R =5/6 and R = 9/10. The loss probability 8, along with the average left-degrees of the
graphs obtained are given in Figure 3. The right hand degree sequences, as polynomials
p(z), are given in Appendix B. Since our graphs do not have nodes of degree two on the left,
Lemma 3 and Lemma 2 imply that with high probability the corresponding codes recover
from losses occurring with probability é, provided the block length is large enough.

10 Conclusion

We have demonstrated a novel technique for the design and analysis of loss-resilient codes
based on random bipartite graphs. Using differential equations derived from the underlying
random process, we have obtained approximations of the behavior of this process that very
closely match actual simulations. With these tools, we have designed codes with simple and
fast linear-time encoding and decoding algorithms that can transmit over lossy channels at
rates extremely close to capacity. Specifically, for any constant ¢ > 0 and all sufficiently long
block lengths n, we have constructed codes of rate R with encoding and decoding algorithms
that run in time proportional to nln(1/€) that can recover from almost all patterns of at

13

R 1/2 | 2/3 | 3/4 | 4/5 | 5/6 | 9/10

0 0.4996 | 0.333 | 0.2498 | 0.1999 | 0.1655 | 0.099
6/(1-R) 0.9992 | 0.999 | 0.9992 | 0.9995 | 0.9993 | 0.99
Average degree 26.16 | 26.16 | 26.16 | 26.16 | 46.39 | 46.39

Figure 3: Close to optimal codes for different rates

most (1 — R)(1 — ¢)n losses.

We expect these codes to have many practical applications. FEncoding and decoding
speeds are several orders of magnitude faster than previous software-based schemes, and are
fast enough to be suitable for high bandwidth real-time applications such as high fidelity
video. For example, a preliminary implementation can sustain encoding and decoding
speeds more than 100 Mbits/second on an Alpha BRET EV-5 330MHz machine with packets
of length 2Kbit bits each and 100K packets per message and block length 200K (and thus
the rate is 1/2).

We have also implemented error-correcting codes that use our novel graph constructions
and decode with belief propogation techniques. Our experiments with these constructions
yield dramatic improvements in the error recovery rate. We will report these results in a
separate paper.

11 Acknowledgements

In the preliminary stages of this research, Johannes Blomer helped to design and test
some handcrafted degree sequences that gave the first strong evidence that irregular degree
sequences are better than regular degree sequences. Both Johannes and David Zuckerman
worked on some of the preliminary combinatorial analysis of the decoding algorithm. We
thank them for their contributions.

References

[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority Encoding Trans-
mission”, IEEFE Transactions on Information Theory (special issue devoted to coding
theory), Vol. 42, No. 6, November 1996, pp. 1737-1744.

14

[2] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes With Nearly Optimal
Recovery”, Proc. of the 36" Annual Symp. on Foundations of Computer Science, 1995,
pp- 512-519.

[3] N. Alon, M. Luby, “A Linear Time Erasure-Resilient Code With Nearly Optimal Re-
covery”, IEEFE Transactions on Information Theory (special issue devoted to coding
theory), Vol. 42, No. 6, November 1996, pp. 1732-1736.

[4] R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley,
Reading, M A, 1983.

[5] A. Broder, A. Frieze, E. Upfal, ‘On the Satisfiability and Maximum Satisfiability of
Random 3-CNF Formulas”, Proc. of the 4" ACM-SIAM Symp. on Discrete Algorithms,
1993, pp. 322-330.

[6] P. Elias, “Coding for Two Noisy Channels” Information Theory, Third London Sym-
posium, September 1955, Buttersworth’s Scientific Publications, pp. 61-76.

[7] R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA,
1963.

[8] T.G. Kurtz, Approximation of Population Processes, CBMS-NSF Regional Conf.
Series in Applied Math, STAM, 1981.

[9] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North Holland, Amsterdam, 1977.

[10] A. Shwartz, A. Weiss, Large Deviations for Performance Analysis, Chapman &
Hall, 1995.

[11] M. Sipser and D. Spielman, “Expander codes”, IEEE Transactions on Information
Theory (special issue devoted to coding theory), Vol. 42, No. 6, November 1996, pp.
1710-1722.

[12] D. Spielman, “Linear-Time Encodable and Decodable Error-Correcting Codes” IFEFE
Transactions on Information Theory (special issue devoted to coding theory), Vol. 42,
No. 6, November 1996, pp. 1723-1731.

12 Appendix A

In this section we give an explicit solution to the system of differential equations given by (2)
and (3). We start with the substitution dz/z = dt/e(t), which gives z := exp(— f§ d/e(1)).
This transforms for ¢ > 1 Equation (2) to

a(z)—1

() = i(ri(2) = repa (2) L,

15

where prime stands for derivative with respect to the variable z. Note that the average
degree a(z) equals Y il;(z)/e(x), which in terms of the function A(z) can be written as
14+ 2N (z)/A(z). Hence, we obtain for ¢ > 1

(o) = i) = ria () 3 -

These equations can be solved recursively, starting with the highest nonzero r;. (In the case

where there is no highest nonzero r;, that is r; > 0 for all ¢, the following equations are still

valid, although stronger analysis tools are required to show that the solution is unique.)
The explicit solution is given by

Y N
ri(z) = A(m)z(—l/yzl rit1(y)AMY) /\((:yy))dm + Ci) (6)

for some constants ¢; to be determined from the initial conditions for r;. It is straightforward

to check that .
ri(z) = Y (~1)" (‘Z _ i)c]'(k(w))j- (7)

iz
Further, one verifies directly that
j—1
;= . i(1).
¢ Z (z - 1) ri(1)
Jzt

(Note that # = 1 corresponds to the beginning of the process.) We proceed with the
determination of the expected value of r;(1): because each node on the left is deleted
randomly just prior to time 0 with probability 1 — §, and the graph is a random graph over
those with the given degree sequence, to the nodes on the right it is as though each edge
is deleted with probability 1 — é. Hence, an edge whose right incident node had degree j
before the deletion stage remains in the graph and has degree i afterwards with probability

(218 (1 — 6)'*. Thus
m—1\ _. :
(1) = m (1 —)™,
)= <]~_1) (1-9)
m>j
Plugging in the last formula in that of ¢; we see that
m—1 :
;= mo".
=z (i)

(Use the identity (7__11) (Zj) = (" (7';__2])) Hence, we obtain for ¢ > 1 from (7)

ri(e) = 3 (=) (‘7: i) (m) 1) pr(OM(2))'. (8)

m>j>i i-1

16

To obtain the formula given for ri(z) in Lemma 1, we note that ri(z) = e(z) — 3", 7i(2).
The sum of the right hand side of (8) over all ¢ > 1 equals

. (m—1 , i1 {7 —1
DD pm(BM@)Y D=1] = 0A@).
mj J i<j !
(The inner sum equals 1 if j = 1, and is zero otherwise.) Hence, we have

n(e) = (o) = 6N+ 0N Lo 3 (1) 1(".1_1)(6A(m))j‘1

7<m]_1
= zé\(z) — 6N (z) + oA\ (2 me1—5A)™

= SA(z)|z — 14 p(1 - 6/\(50))].

This proves Lemma 1.

13 Appendix B

In this section we exhibit for different rates R some examples of good degree sequences
found by the linear programming approach.
Example 1. R=p5=1/2

In this case we set A(z) = 55 -7, 22", The best value for § found was 0.49960 which is
99.92% of the optimal value 0.5. The corresponding polynomial p is given by

p(z) = 0.0010602' 4 0.0001922" 4 0.1181422% 4+ 0.1447392%* + 0.1714402** +
0.082438z% 4+ 0.1777792% 4+ 0.0301602'° + 0.08044022%*° + 0.0561762*%° +
0.0504492'°% + 0.0114172'%%° + 0.03973324°*° + 0.035838230049,

A graph of ri(z) = 6A(z)(z — 14+ p(1 — éA(x))) is given in Figure 4.
Example 2. R =2/3, 5=1/3
A(z) is the same as in the previous case. We found the value § = 0.33300 which is 99.9%

of the optimal value 1/3. The polynomial p is given by

plz) = 0.0080822% + 0.026437227 + 0.1225792%2 + 0.2509982%% + 0.2116532%° +
0.0450562%? + 0.09487622*? + 0.0708012*% 4+ 0.0621002'°*° + 0.0151142 9% 4
0.0476962*%*° + 0.0022402" 47 + 0.04236727°°4

Example 3. R=3/4, 5 =1/4

17

0.000008

0.000007

0.000006

0.000005

0.000004

0.000003

0.000002

0.000001

0
0 0.2 0.4 0.6 0.8 1

X

Figure 4: Graph of ri(z) for Example 1

A(z) is the same as the last two examples. The best value for § was 0.2498 which is
99.92% of the optimal. The polynomial p is given by

p(z) = 0.00000522 + 0.0013452*" + 0.2847922°% + 0.0631442°* +
0.1160792% 4 0.0682932'°! + 0.0761062 "% + 0.052359z 192
+0.05961222% + 0.0841382%%° + 0.0632612'°* + 0.032163219% +
0.036367219 + 0.01599227°% + 0.04634523004°,

Example 4.R =4/5, 3 =1/5
Here again A(z) is the same as in the previous two cases. The best value for § we found
was 0.19990 which is 99.95% of the optimal value. The polynomial p is given by

p(z) = 0.0022202*% + 0.0228492* + 0.2760652%° 4 0.0860072™° 4 0.1854472'*° +
0.0081062'%¢ + 0.1241602%° + 0.0687832% + 0.0894482'°*° + 0.0155302'9%% +
0.06419024°*° + 0.0020342'4°% + 0.05516023°°4°

Example 5.R =5/6, 3 =1/6
In this case we chose A(z) = 21—0 S22, 2%, hence, the smallest degree on the left is 5, and
not 3 as in the previous examples. The best value for § we found was 0.1655000, which is

99.3% of the optimal value 1/6. p(z) is given by

p(z) = 0.00001827 + 0.02127425* + 0.0327242°° + 0.1877192% + 0.13900022*? +
0.0862302%%° + 0.1145162'%° + 0.0700242°°*° + 0.0684102°9 + 0.28008623°94°

The graph of r1(z) is given in Figure 5.

Example 6. R =9/10, 5 =1/10

18

0.000005
0.0000045
0.000004
0.0000035
0.000003
0.0000025
0.000002
0.0000015
0.000001
0.0000005
0
0 0.2 0.4 0.6 0.8 1

X

Figure 5: Graph of r;(z) for Example 5

Here A(z) is the same as in the previous case, the best value of § is 0.09900, and p(z) is
given by

p($) = 0‘000064$2-|-0.07585333135—I—0,107947x137-|- 0-040788$221—}—
0.07099622%° + 0.1049222%%° + 0.1077992'%4° + 0.0393652 9% +
0.0805082°°26 1 0.09138025% 4 0.0053592'4°%° + 0081109230049 +
0.0140302499% 4 0.1798812°00°19

19

